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  Abstract   Throughout the fi rst two decades of human development, growth of 
adipose tissue primarily results from an increase in adipocyte number (hyperplasia). 
Once established, the number of fat cells remains relatively constant, and adipose 
tissue grows larger primarily by fi lling the resident cells with more fat (hypertro-
phy). Obese children exhibit an augmented rate of increase in adipocyte number, 
and correspondingly, obese adults possess more fat cells. Hence, childhood and 
adolescence appear to be critical periods in establishing the number of fat cells. 
Endocrine-disrupting chemicals (EDCs) can predispose a child to obesity by infl u-
encing all aspects of adipose tissue growth, starting from multipotent stromal cells 
   (MSCs) and ending with mature adipocytes. EDC exposure can increase the number 
of preadipocytes, enhance the differentiation of preadipocytes into adipocytes, and 
augment the uptake of fat into existing adipocytes. Unlike genetic mechanisms, 
which require a mutation event, EDCs have the capacity to quantitatively alter gene 
expression by modulating cellular-signaling pathways and by introducing epige-
netic changes that also alter gene expression. Therefore, EDC exposure could foster 
a swift change in the metabolic profi le of a population, which might provide at least 
a partial explanation for the rapid rise in obesity. This review focuses on the devel-
opmental origins of the adipocyte and its connection to early-onset obesity with the 
aim of providing a foundation for formulating hypotheses regarding how EDCs can 
interfere with adipogenesis and contribute to the obesity epidemic.  
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   Introduction 

 On April 20, 2010, a group of retired military leaders reported that 27% of all 
Americans aged 17–24 were too overweight to join the military  [  1  ] . Although cur-
rent recruitment goals are satisfi ed, the concern is that this trajectory will continue 
until only a small proportion of America’s youth will be qualifi ed to serve  [  2  ] . 
This is supported by a recent study projecting that by 2030, 86% of Americans 
will be overweight, contributing to upwards of 900 billion dollars yearly in addi-
tional health care costs  [  3  ] . Notwithstanding the national security implications, 
the major concern with childhood obesity is its strong link with and ability to 
predict adult obesity and metabolic disease  [  4–  7  ] . Indeed, a recent longitudinal 
study showed that increased waist diameter and body mass index (BMI) in chil-
dren and adolescents increased the risk for abdominal obesity, insulin resistance, 
thrombotic disorder, elevated low-density lipoproteins (“bad” cholesterol), and 
systemic infl ammation, later in life  [  8,   9  ] . These are the signatures of metabolic 
syndrome, and while adults might rise above this outcome, prevention at earlier 
stages in life would be more effective. 

 Throughout the fi rst two decades of human development, growth of adipose tis-
sue primarily results from an increase in adipocyte number (hyperplasia)  [  10,   11  ] . 
After this, the number of fat cells remains relatively constant, and adipose tissue 
grows larger primarily by fi lling the resident cells with more fat (hypertrophy)  [  11  ] . 
Obese children exhibit an augmented rate of increase in adipocyte number, and cor-
respondingly, obese adults possess more fat cells  [  10,   11  ] . Hence, researchers have 
hypothesized that childhood and adolescent periods are critical in establishing the 
number of fat cells  [  12,   13  ] . The inference is that a child who is overnourished will 
produce an excess of new fat cells and, in essence, be “stuck” with these cells later 
in life. In part, this explains why the military leaders suggest school nutrition inter-
vention, and why celebrities like Chef Jamie Oliver champion the eradication of 
processed foods from school lunch programs  [  14  ] . While these are wise choices that 
will ultimately be benefi cial, unfortunately, mounting evidence supports the idea 
that obesity is established before puberty  [  15  ]  and even before birth  [  16  ] . Genetics 
is a popular mechanism to explain such a deterministic phenomenon, except that it 
cannot account for the rapid rise in obesity. 

 Endocrine-disrupting chemicals (EDCs) have the strong potential to predispose 
a child to obesity by infl uencing all aspects of adipose tissue growth, starting from 
multipotent stromal cells (MSCs) and ending with mature adipocytes  [  17  ] . Certain 
EDCs can create an immutable adipocyte landscape characterized by increased 
proliferation and differentiation of adipose progenitors, coupled with an inherent 
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alteration in the MSC compartment that biases stem cells toward the adipose lineage 
 [  18  ] . Unlike genetic mechanisms, which require a mutation event, EDCs have the 
capacity to quantitatively alter gene expression by modulating cellular-signaling 
pathways and by introducing epigenetic changes that also alter gene expression. 
Epigenetic marks in chromatin are programmed during times of developmental 
plasticity (in the womb or during childhood and adolescence)  [  19  ] . Therefore, EDC 
exposure could foster a swift change in the metabolic profi le of a population, which 
might provide at least a partial explanation for the rapid rise in obesity. This also 
vindicates the common experience that adipose tissue is often unyielding to shrink-
age through improved diet and exercise. Many of the early events in adipogenesis 
remain unclear, thus, the processes targeted by EDCs may not be fully understood 
until fundamental mechanisms of adipose development have been resolved. This 
review focuses on the developmental origins of the adipocyte and its connection to 
early-onset obesity with the aim of providing a foundation for formulating hypoth-
eses regarding how EDCs can interfere with adipogenesis and contribute to the obe-
sity epidemic.  

   The Morphology of Adipose Tissue in Early-Onset Obesity 

 Humans are the fattest of all mammals at birth, typically possessing ~ 15% body fat, 
of which most is white adipose tissue (WAT)  [  20  ] . This is predicted to be the result of 
high encephalization  [  21  ]  because our large brains consume an enormous amount 
of energy. During infancy, body fat composition nearly doubles (to 28%), but then 
declines during early childhood  [  22  ] . After about 8 years of age and throughout 
adolescence, adipose tissue grows, although the body distribution becomes sexually 
dimorphic. Males decrease their fat composition as a percentage of total body mass, 
whereas females increase their fat composition  [  23  ] . Under normal circumstances, 
body fat functions in the proper timing of puberty, again with a sexual dimorphism. 
A high-percent body fat delays puberty in males, but initiates early menarche in 
females  [  24  ] . Recent research, using 14C labeling, highlighted the childhood and 
adolescent periods as the main time of adipose hyperplastic growth  [  11  ] . In early 
adulthood, the total number of fat cells stabilizes; the number only increases when 
existing cells have reached full capacity through hypertrophic growth  [  11  ] . 

 While more sophisticated, the 14C-labeling studies actually confi rmed long-
standing results. Nearly 40 years ago, obesity, particularly early-onset obesity, was 
linked to hypercellularity of adipose tissue  [  25–  27  ] . Ten years later, researchers 
charted the steady increase in adipocytes during the fi rst two decades of life and 
showed that obese children possessed more fat cells which multiplied at a faster rate 
than non-obese children  [  10  ] . Further studies demonstrated that once established, a 
person’s adipocyte population is resistant to changes in number. For example, obese 
adolescent girls who were put on a strict diet and advised to engage in physical 
activity surprisingly showed increased hyperplastic adipocyte growth after 1.5 years, 
compared to the reference group  [  28  ] . Those girls that were most resistant to the 
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treatment had the greatest increase in adipocyte number. This is supported by the 
14C-labeled adipose studies, mentioned above, which also showed that the number 
of adipocytes remains relatively constant throughout adulthood, is higher in obese 
individuals, and cannot readily be reduced even after bariatric surgery (although 
adipocyte volume decreases)  [  11  ] . 

 The body’s resistance to changes in adipocyte number correlates well with the 
observation that the body resists major alterations in weight gain or loss. In the 
1930s and 1940s, the general belief was that obesity was induced by a lack of will-
power  [  29  ] , perhaps due to some hypothalamic disruption that infl uenced satiety 
 [  30  ] . However, when obese patients were forced to follow a severe liquid diet, they 
reached a more normal weight, but this was, by no means, a homeostatic state  [  31–
  33  ] . They exhibited signs of starvation, and a preoccupation with the craving for 
food, stronger than addiction, an urge akin to an extreme thirst for water or the 
desire to breathe. In the opposite scenario, lean volunteers from the Vermont State 
Prison were asked to eat 2–3 times more than usual  [  34  ] . The authors of the study 
stated, “achieving a serious gain in weight cannot be undertaken as a secondary 
occupation.” Although the prisoners gained weight at different rates, they were all 
able to return to their former weight. Importantly, the prisoners’ weight gain was 
hypertrophic in nature, whereas the starving obese subjects’ weight loss was 
hypotrophic. In each case, the individuals were struggling against their basic biol-
ogy, their metabolic set point, defi ned by the number of cells in adipose depots. 

 Of course, this is not to say that adipocytes are static entities, or that only a fi xed 
number of cells are allocated to each person. Although adipocytes are postmitotic, 
they do regenerate about once every 10 years  [  11  ]  through the processes of apopto-
sis, autophagy, dedifferentiation, or necrosis, and subsequent renewal  [  35–  37  ] . The 
adipocyte pool size can fl uctuate; a high-fat diet, for example, will encourage hyper-
plasic growth of subcutaneous fat depots in adult mice  [  38  ] . Moreover, when cells 
have reached their lipid capacity, they will generate paracrine signals that result in 
the generation of more fat cells in rodents  [  39–  41  ] . Not all fat tissue is equally 
capable of hyperplastic growth; in particular, visceral abdominal fat (VAT) does not 
readily increase its cell number  [  38,   42  ] . A very popular hypothesis is that many 
pathological consequences of obesity are due to excessive adipocyte hypertrophy 
(as a result of nutrient excess, or an inherent imbalance in fatty acid synthesis and 
oxidation  [  43  ] ) coupled with an impaired ability to compensate with adipose tissue 
expansion  [  44–  48  ] . The result is adiposopathy  [  49  ] , which is often characterized by 
lipotoxicity, where lipid essentially “leaks” into other tissues generating proinfl am-
matory signals and oxidative stress, leading to chronic hyperglycemia and increased 
circulation of triglycerides  [  50,   51  ] . One reason that thiazolidinedione antidiabetic 
medications are effective is because they protect against this ectopic fat “leakage” 
by encouraging the birth of new adipocytes in depots other than the VAT, thereby 
preventing adipocytes from bursting or leaking into the surrounding tissue  [  52  ] . 

 Notwithstanding these results, increased adipocyte number, rather than increased 
size, is the morphology commonly shared among obese individuals who developed 
the disease early or during adolescence. Furthermore, adipose depot hypercellular-
ity is also the morphology associated with resistance to weight loss. This review 
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highlights programming events early in life that augment the proliferation and 
differentiation capacity of adipose precursors resulting in an increased number of 
fat cells. This is important because the obesity epidemic is now recognized as a 
crisis trending toward the very young  [  53  ] . Hence, there is a strong impetus to 
understand the mechanisms underlying early fat cell development, and how EDCs 
can infl uence the differentiation of preadipocytes to adipocytes and the commitment 
of stem cells to preadipocytes.  

   Endocrine Disruption During the Differentiation Phase 

 In the fi eld of adipose biology, a heightened number of fat cells is simply an end 
point, and it becomes important to investigate the mechanistic basis. The mature 
adipocyte is generated from a white adipocyte precursor (often called a “preadipo-
cyte”) which is committed to the adipocyte fate and cannot differentiate into any 
other lineage (like bone, cartilage, muscle, or even brown fat)  [  54–  57  ] . This precur-
sor is derived from multipotent stromal cells (MSCs) found in almost all fetal and 
adult tissues  [  58  ] , but most commonly cultured from adipose tissue or bone marrow. 
Most evidence supports the theory that MSCs are the progeny of perivascular cells 
that surround blood vessel walls  [  59,   60  ] . In support of this hypothesis, it was 
recently shown that the white adipose precursor exists within the adipose vascular 
network  [  61  ] . This is not surprising because adipose is a highly vascularized tissue 
and antiangiogenic agents reduce adipose mass  [  62,   63  ] . The differentiation of 
white adipocyte precursors into mature adipocytes (adipogenesis) is well character-
ized in the literature. The central regulator in this process is the peroxisome prolif-
erator–activated receptor gamma (PPAR g ), which associates with the retinoid X 
receptor (RXR) and binds DNA targets as a heterodimer  [  64  ] . Figure  10.1  depicts 
the many of the known events in adipocyte differentiation, focusing on their origin 
from multipotent precursors, the other main pathways that these precursors can dif-
ferentiate along, commitment to preadipocytes, differentiation, and apoptosis.  

 PPAR g  is fi rst induced at the transcriptional level by CCAAT/enhancer-binding 
protein (C/EBP)  b  and  d   [  65,   66  ] , and then engages in a feed-forward loop with C/
EBP a , amplifying the adipogenic signal  [  67  ] . However, C/EBP a  also induces 
Sirtuin-1  [  68  ]  which curbs adipogenesis via inhibition of PPAR g  target genes  [  69  ] . 
The induction of adipogenesis is typically initiated in cell culture by differentiating 
agents  [  70  ]  such as insulin, glucocorticoids, and methylisobutylxanthine, which act 
through the PI3K/AKT (phosphoinositide 3-kinase/AKT), glucocorticoid receptor, 
and cAMP protein kinase pathways, respectively. This induction cocktail primarily 
functions to increase the expression level of C/EBP a  or PPAR g , not to activate 
PPAR g  via the production of ligand. An exception to this is the insulin-induced 
transcription factor, sterol regulatory element–binding protein 1c (SREBP1c), 
which synthesizes fatty acids that can bind PPAR g   [  71  ] . Indeed, the fatty acid deriv-
ative, 15-deoxy- D 12,14-prostaglandin J2 (15d-PGJ2), is the strongest candidate for 
an endogenous ligand for PPAR g   [  72,   73  ] , although 15d-PGJ2 primarily functions 



260 A. Janesick    and B. Blumberg

  Fig. 10.1    EDCs have the potential to affect multiple aspects of adipocyte development. MSCs 
reside within the vasculature of adipose depots; however, EDCs could increase homing of circulat-
ing MSCs to adipose tissues. EDCs could also alter the epigenetic program of MSCs by turning on 
the expression of adipogenic genes and turning off osterogenic, chondrogenic, and myogenic 
genes. These changes, in addition to the possible involvement of EDCs in the modulation of cellu-
lar-signaling pathways (BMP, WNT), increase the commitment of MSCs to preadipocytes at the 
expense of other lineages. EDCs also play a direct role in the differentiation phase by binding 
PPAR g , promoting the proliferation and differentiation of preadipocytes. Finally, EDCs could 
exert effects on the mature adipocyte by inhibiting apoptosis, or enhancing the storage of fat, 
stimulating hypertrophic growth       
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in angiogenesis  [  74  ] . It was recently suggested that PPAR g  may function in adipo-
genesis without requiring the ability to be activated by ligand  [  75  ] . However, the 
ligand-binding domain itself is required. When the ligand-binding domain of PPAR g  
was mutated, the receptor was unresponsive to known agonists, but the ability of 
preadipocytes to differentiate into adipocytes was unaffected in cell culture  [  75  ] . In 
contrast, deletion of the activation function 2 region of the ligand-binding domain 
rendered the receptor unable to support adipogenesis  [  75  ] . 

 Several EDCs affect PPAR g  activity during adipogenesis. The most well-known 
synthetic agonists of PPAR g  are the thiazolidinedione class of antidiabetic agents 
including rosiglitazone (ROSI) and pioglitazone (PIO)  [  76  ] . In addition to increas-
ing insulin sensitivity, these drugs encourage new fat-cell growth and relieve infl am-
matory stress from hypertrophic cells, but promote hyperplastic obesity. 
Environmental chemicals such as certain phthalates  [  77–  79  ]  and organotins  [  80–  82  ]  
are agonistic ligands for PPAR g . Perfl uoroalkyl acids either activate PPAR g  weakly 
 [  83  ]  or not at all,  [  84  ]  despite activating PPAR a  or PPAR d . In cell culture models, 
phthalates and organotins have the expected effect of promoting preadipocyte dif-
ferentiation  [  78,   80  ] . Importantly, prenatal exposure to tributyltin (TBT) in mice 
caused substantial storage of triglycerides in newborn tissues that normally have 
little to no fat at all  [  80  ] . The experiments did not distinguish between increased 
lipid accumulation in existing cells and an increased number of fat cells. However, 
given the fact that TBT exposure in  Xenopus laevis  tadpoles caused the entire testes 
to essentially turn into fat, it was concluded that TBT primarily functions to pro-
mote new adipocyte development at the expense of other cell types. Further studies 
(outlined in the next section) were undertaken to understand how TBT biases pro-
genitor cells toward the adipocyte lineage. 

 To date, TBT is the only EDC known to cause in utero effects on adipocytes via 
PPAR g . Prenatal exposure to phthalates has not yet been linked to adiposity later in 
life; although high levels of urinary phthalate metabolites were positively correlated 
with waist diameter in men  [  85  ] . Other EDCs also promote adipogenesis, but do not 
act through PPAR g . Coplanar PCBs (e.g., PCB-77) bind the aryl hydrocarbon recep-
tor in adipocytes and increase adipogenesis  [  86  ] . Bisphenol A (BPA) and BPA-
related chemicals including alkylphenols stimulate adipogenesis in cell culture  [  87  ] . 
There are a variety of other nuclear receptors and their cofactors that are activated 
during adipogenesis  [  88,   89  ]  including those known to be involved in energy metab-
olism such as the liver X receptor (LXR), the glucocorticoid receptor (GR) and the 
thyroid receptor (TR), and those more well known in other non-metabolic pathways 
such as nuclear receptor–related 1 (NURR-1) and the germ cell nuclear factor 
(GCNF)  [  88  ] . Any of these receptors could potentially be targeted by chemicals. 
Furthermore, RXR is also upregulated during adipogenesis and is activated by TBT 
 [  80,   90  ] . RXR is an obligate heterodimeric partner for PPAR g , as well as TR, 
NURR-1, LXR, and PPAR (among many other nuclear receptors). RXR itself can 
be activated in a subset of these heterodimers. 

 Despite the fact that many EDCs accumulate in adipose tissue and contribute to 
local effects, most studies have explored the broader metabolic consequences of 
EDCs, and then addressed the secondary effects on the adipocyte. For example, 
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polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) 
reduce thyroid function  [  91  ]  possibly by competing for thyroid transport proteins 
 [  92  ] . High levels of maternal PCBs and PBDEs are correlated with reduced total 
and free T 

4
  levels in infant cord blood  [  93  ] . Thyroid hormone stimulates lipolysis in 

adipocytes by downregulating phosphodiesterase activity which normally functions 
to inhibit catecholamine-induced lipolysis  [  94,   95  ] . Thyroid hormone also down-
regulates SREBP1c, resulting in the inhibition of lipogenesis  [  96  ] . The inference is 
that exposure to EDCs like PCBs and PBDEs will reduce thyroid hormone levels 
and cause a concomitant increase in lipid accumulation in adipocytes. Another large 
class of EDCs that globally affect energy metabolism is the synthetic estrogens, like 
diethylstilbestrol (DES) and bisphenol A (BPA)  [  97  ] . In adults, estrogens protect 
against adiposity through exergonic, energy-consuming reactions in glycolysis, 
fatty acid oxidation, and electron transport  [  97  ] . At the level of the adipocyte, estro-
gen receptor beta (ER b ) blocks the transcriptional activity of PPAR g  and, hence, is 
antiadipogenic but prodiabetogenic  [  98  ] . In contrast to their effects in adults, low 
doses of estrogens given pre- or perinatally strikingly promote obesity in exposed 
animals  [  99  ] . Similarly, nicotine, which promotes weight loss in adults, increases 
adipose hypertrophy in young rats  [  100  ] . The overall conclusion from these studies 
is that EDCs can impact the differentiation of adipocytes in a variety of ways.  

   Endocrine Disruption During the Commitment Phase 

 Recent research has been directed toward understanding the commitment phase of 
adipocyte development, that is, how MSCs become preadipocytes. Recently, pro-
genitor cells (which later matured into adipocytes) were purifi ed and found to have 
the following phenotype: lin − , CD29 + , CD34 + , Sca-1 + , CD24 +   [  101  ] . These cells 
could generate an entire adipose depot in lipodystrophic mice, suggesting that they 
are bona fi de adipocyte precursors  [  101  ] . What remains largely unknown is the 
transcriptional program that turns stem cells into preadipocytes. Bone morpho-
genic protein (BMP) signaling is not only important in skeletal development but 
appears to be a vital component in stem cell commitment to the adipocyte lineage 
 [  102  ] . Recently, Zfp423, a downstream target of BMP signaling, was found to be 
upregulated in fi broblast clones with high adipogenic potential compared with 
cells having a low adipogenic potential  [  103  ] . However, Zfp423 expression 
remained unchanged during the preadipocyte to adipocyte transition, suggesting 
that it is involved in the commitment of stem cells to the preadipocyte lineage, but 
perhaps not in preadipocyte maintenance  [  103  ] . In addition to active BMP signal-
ing, repression of noncanonical WNT5a signaling is required for MSCs to evade 
the osteogenic lineage and proceed toward the adipogenic lineage  [  104  ] . This 
aligns well with the observation that preadipocytes do not differentiate in the pres-
ence of WNT signaling  [  105  ] . 

 There are very few studies that investigate how EDCs could bias the MSC 
population toward the adipogenic linage. In cell culture, organophosphates and 
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4-tertoctylphenol thwarted the bone differentiation capacity of MSCs  [  106  ] . 
When MSCs were cultured from adipose tissue, then treated with TBT or ROSI 
plus induction cocktail, their proliferation capacity decreased, and up to 60–80% of 
the cells differentiated into mature fat cells  [  18  ] . Cells treated with induction cock-
tail, but without TBT or ROSI, maintained higher proliferative levels, and only 
25–40% of cells became adipocytes  [  18  ] . Interestingly, this effect was also seen 
after in utero exposure. Pregnant dams were treated with a single dose of TBT or 
ROSI, and the MSCs (cultured from the adipose tissue of embryos) were already 
predisposed to become fat cells, even without further treatment with TBT or ROSI 
 [  18  ] . In addition, the MSCs harvested from the TBT- or ROSI-exposed pups were 
preprogrammed to prefer the adipogenic fate because, when induced with bone dif-
ferentiating cocktail, many cells still differentiated into adipocytes  [  18  ] . This sug-
gests that the MSC population in prenatally TBT- or ROSI-treated animals is 
enriched in adipocyte precursors at the expense of osteoblasts  [  18  ] . This mutually 
exclusivity ability of a subset of MSCs to differentiate into bone or fat is why osteo-
porosis has been called “obesity of bone”  [  107,   108  ] . MSCs cultured from post-
menopausal women with low bone density accumulate twofold more lipid and 
twofold less type I collagen (part of the bone extracellular matrix) compared to 
women with healthy bones  [  109  ] . Not surprisingly, diabetes medications that acti-
vate PPAR g  increase the risk for bone fractures  [  110  ] . The results with TBT suggest 
that obesogen exposure may have a similar effect on osteoporosis. 

 The most recent evidence supports the idea that fat cells are regenerated from an 
existing population of MSCs that are found in the vasculature of adipose depots  [  61, 
  101  ] . However, it is also possible that circulating MSCs derived from bone marrow 
can be recruited to the depots. The relative contribution of resident and circulating 
MSCs to the obesogenic phenotype of TBT- or ROSI-treated animals is currently 
unknown. Most studies of MSC migration have been devoted to how MSCs escape 
from bone marrow and fl ood an injury site  [  111,   112  ] . MSCs are predicted to move 
by chemotaxis, losing adherence to their origin, rolling along blood vessels, and 
moving through the extracellular matrix to the tissue that is injured  [  113  ] . By a simi-
lar mechanism, these cells could migrate to adipose tissue upon receiving an appro-
priate signal. This idea was recently tested by transplanting GFP-labeled bone 
marrow–derived MSCs into irradiated wild-type mice, and determining whether 
these cells could populate fat pads in response to adipogenic signals  [  114  ] . ROSI or 
a high-fat diet increased migration of circulating bone marrow cells to omental or 
dorsal intrascapular fat depots  [  114  ] . However, this view has been challenged in a 
subsequent paper, which states that bone marrow–derived circulating progenitor 
cells fail to differentiate into adipocytes  [  115  ] . Whether or not MSCs can be recruited 
to adipose depots from bone marrow is probably a moot point since it now appears 
that MSCs are pericytes that are found in close proximity with vasculature. Whether 
they are solely localized in the bone marrow and adipose vasculature  [  61,   101  ]  or 
instead are found throughout the body  [  59  ]  is currently controversial. More studies 
will be required to determine where adipogenic MSCs are located, whether or not 
they migrate to adipose depots in response to dietary stimuli, and what effects EDCs 
such as TBT and phthalates have on these processes.  
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   Epigenetic Modifi cations During Puberty 

 Although ordinary genetic variability can account for why some people have the 
propensity to become obese, the rapid increase in obesity argues against a genetic 
explanation. Epigenetic phenomena occur much faster than gradual genetic muta-
tion and can easily become established in a population within a single generation 
 [  116  ] . For this reason, epigenetics is a more likely explanation for the “epidemic” of 
obesity. Moreover, epigenetics can also underlie the rapid metabolic adaptations 
that occur in the womb under dietary stress, and perhaps during other developmen-
tal time windows, such as adolescence. While EDCs such as TBT can act on adipose 
tissue directly (e.g., by binding to PPAR g  and inducing adipocyte differentiation), 
they can also target adipose development via more subtle, epigenetic modifi cations. 
EDC exposure has been linked with alterations in the expression of proteins that 
remodel the chromatin landscape, such as DNA methyltransferases, histone acetyl-
transferases, deacetylases, and methyltransferases. For example, in the uteri of ani-
mals that were prenatally exposed to DES, there was a signifi cant increase in the 
mRNA expression of DNA methyltransferase 1 (Dnmt1) and DNA methyltrans-
ferase 3b (Dnmt3b)  [  117  ] . In another example, exposure to the commonly used 
fungicide vinclozolin caused a decrease in the expression of Dnmt1, Dnmt3a, 
Dnmt3L, and euchromatic histone methyltransferase (Ehmt1) in the testes of male 
rats, and some of these genes remained inhibited in subsequent generations  [  118  ] . 

 Since EDCs typically have targeted effects on a particular metabolic pathway, 
the question of specifi city arises. It was shown that Dnmt1 and Dnmt3 can be 
recruited to individual genes simply by being escorted by transcription factors to 
specifi c sequences of DNA, suggesting that the specifi city of the EDC effect is con-
ferred by the active transcriptional programs in individual cells  [  119,   120  ] . Of 
course, identifi cation of bona fi de DNA sequences (often CpG islands) modulated 
by EDCs is a challenge and requires a genomic approach. Over 6,000 genes have 
been predicted to affect body mass, and there are ten times more genes that foster an 
increase in weight, rather than a decrease  [  121  ] . It is likely that epigenetic changes 
related to adipogenesis and obesity originate within the stem cell compartment. The 
reason that diet and exercise primarily alter adipocyte volume rather than adipocyte 
number is because the stem cells are already biased, through changes in gene regu-
lation, to replenish the adipocyte pool to its “set point,” if for any reason the number 
of adipocytes declines. In support of this model, MSCs from mice exposed to TBT 
in utero exhibited alterations in the methylation status of the CpG islands of adipo-
genic genes such as AP2 and PPAR g  which led to an increase in the number of 
preadipocytes at birth and an increased propensity to differentiate into adipocytes 
upon stimulation  [  18  ] . 

 Even more profound is the possibility that epigenetic changes caused by environ-
mental exposures are accumulated or inherited across generations. Vinclozolin, for 
example, is linked to infertility throughout multiple generations,  [  122  ]  due to a 
“memory” maintained within the male germ cells  [  123  ] . While there are currently no 
data regarding transgenerational effects of obesogens, it is reasonable to hypothesize 
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that obesogenic compounds such as TBT, BPA, or phthalates could also infl uence 
the propensity to be obese for some generations after the initial exposure. An exam-
ple in humans serves to illustrate this point. In the Overkalix region of Sweden, it 
was demonstrated that food availability during the prepubescent period affected the 
longevity and mortality from cardiovascular disease of a boy’s grandchildren. A 
single winter of overeating could lead to a 6-year decrease in longevity of a boy’s 
grandsons, but not granddaughters  [  124  ] . While this is a nutritional study, it is quite 
possible that chemical exposure during development could have similar transgen-
erational effects. The human prepubescent period is especially susceptible to epige-
netic changes because the testes or ovaries are developing, and the primordial germ 
cells incorporate sex-specifi c imprinting patterns in mice  [  125  ] . One hypothesis 
proposed to explain the Overkalix phenomenon is that stress caused by improper 
nutrition affects downstream proteins involved in imprinting  [  126  ] . One such pro-
tein candidate is BORIS (Brother of the Regulator of Imprinted Sites) which is 
expressed in the male testes only in germ cells undergoing genome remethylation 
 [  127  ] . During the prepubescent period, an exogenous chemical could regulate 
BORIS and permanently impact the methylation status of DNA. Hence, while it is 
debatable whether adolescence is the most critical period in establishing obesity, it 
is likely to be a period when epigenetic changes can be “locked in” for the future.  

   Conclusion 

 A somewhat vestigial function of the adipocyte, especially in Western societies, is 
its incredibly effi cient storage capacity for fat. Hence, a resounding presumption is 
that unhealthy eating and a convenience food-driven society are enabling agents that 
contribute to self-induced corpulence. However, babies, children, and adolescents 
seem destined, almost programmed, to keep their “baby fat” throughout life. We 
have argued that the morphology of adipose tissue associated with early-onset obe-
sity provides a basis for why weight loss in obese people (the state of being “reduced 
obese”) is not often a homeostatic state of normalcy and weight gain is observed in 
more than 90% of cases. We argued that EDCs could exacerbate this problem by 
increasing the differentiation capacity of preadipocytes, or biasing the MSC pool 
toward the adipocyte lineage. Moreover, we discussed how EDCs have the potential 
to affect epigenetic reprogramming events that might cause irreversible modifi ca-
tions that create transgenerational inheritance of obesity. 

 The concept of early disruption in adipocyte development explains why each 
person seems to possess a metabolic set point, which is regulated like a thermostat. 
The thermostat will resist change in temperature, no matter if a window is opened 
or a hot oven is turned on. If the set point is altered, the new temperature will be 
maintained. Early nutrition and chemical exposure could alter an individual’s set 
point, making the fi ght against weight gain that much more diffi cult. Obesity is dif-
fi cult to reverse once established; therefore, it makes sense to shift the focus toward 
preventative measures. On May 11, 2010, First Lady Michelle Obama launched a 
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campaign called Let’s Move! As a result of strong communication between science 
and politics, Mrs. Obama drew attention to EDCs, calling for increased research in 
this area, reformulation of plastics, and screening for chemicals that are obesogenic 
 [  128  ] . With national attention to this problem, the hope is that the contribution of 
EDCs to the obesity epidemic will fi nally be recognized so that appropriate action 
can be taken to reduce exposure at critical periods during life.      
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