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Obesity and obesity-related disorders, such as type 2 diabetes, hypertension, and cardiovascular
disease, are epidemic in Western countries, particularly the United States. The conventional wis-
dom holds that obesity is primarily the result of a positive energy balance, i.e. too many calories
in and too few calories burned. Although it is self-evident that fat cannot be accumulated without
a higher caloric intake than expenditure, recent research in a number of laboratories suggests the
existence of chemicals that alter regulation of energy balance to favor weight gain and obesity.
These obesogens derail the homeostatic mechanisms important for weight control, such that
exposed individuals are predisposed to weight gain, despite normal diet and exercise. This review
considers the evidence for obesogens, how they might act, and where future research is needed
to clarify their relative contribution to the obesity epidemic. (Molecular Endocrinology 23:

1127-1134, 2009)

besity and obesity-related disorders such as type 2 diabe-
Otes, hypertension, and cardiovascular disease are epidemic
in Western countries, particularly the United States. The con-
ventional wisdom holds that obesity is primarily driven by a
prolonged positive energy balance, i.e. too many calories in-
gested and too few calories burned. Although this axiom ex-
plains the fundamental basis of obesity in its simplest terms, a
complex set of physiological interactions are necessary to move
body weight outside of its normal range. Obesity is not simply a
product of overeating and lack of exercise. Instead, the accumu-
lation of fat or mobilization of lipids from adipose storage de-
pots is controlled by a variety of factors. These include the
hormonal regulation of appetite and satiety, regulation of glu-
cose levels, central control of basal metabolic rate, regulation of
metabolic setpoints, and the number, size, and metabolic activ-
ity of adipocytes. Moreover, adipose tissue itself produces key
components in the body’s feedback systems that help to fine
tune appetite and satiety.

Obesity is the result of a prolonged disturbance in the ho-
meostatic regulation of energy metabolism that favors triglyc-
eride storage and adipocyte hypertrophy. The number of adipo-
cytes is also greater in obese individuals, implicating increased
adipogenesis or hyperplasia as contributing to fat mass. Mea-
surement and modeling of fat cell dynamics via radionuclide
tracing suggest that increased adipocyte number is largely estab-
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lished by early adulthood. This is a consequence of an earlier
onset and increased adipocyte expansion (1). There is some
evidence to support hyperplasia as a result of extreme hypertro-
phy in some adults although adipocyte turnover appears to be
balanced and tightly regulated in both lean and obese individu-
als (1). Increased adipose mass elevates the risk for the initiation
or progression of a variety of pathological conditions, including
metabolic syndrome-associated disorders and some cancers. A
multitude of factors will influence whether or not an individual
becomes obese, including the factors noted above, as well as
single nucleotide polymorphisms in a variety of genes, viral ex-
posure, chronic reductions in sleep, and stress. These have been
reviewed elsewhere (2) and will not be considered here. Instead,
this review will focus on an emerging new field: the influence of
chemical exposure on obesity.

Obesogens can be defined functionally as chemicals that in-
appropriately alter lipid homeostasis to promote adipogenesis
and lipid accumulation (2, 3). Evidence is accumulating from
laboratories around the world supporting this general concept.
Here we discuss a set of chemicals that interact with fat and
weight-regulatory mechanisms resulting in obesogenic pheno-
types. We discuss evidence supporting the existence of chemical
obesogens and identify potential mechanisms of action (where
they are known). Parallels between obesogen action and similar
effects observed in genetic models, with dietary components or

Abbreviations: BPA, Bisphenol A; DEHP, (2-ethylhexyl) phthalate; DES, diethylstilbesterol;
ER, estrogen receptor; HSD, hydroxysteroid dehydrogenase; MEHP, mono[2-ethyl-hexyl]
phthalate; NR, nuclear hormone receptor; PFC, perfluoro alkyl compound; PFOA, perfluo-
rooctanoic acid; PPAR, peroxisome proliferator-activated receptor; RXR, retinoic X recep-
tor; TBT, tributyltin; TPT, triphenyltin; TZD, thiazolidinedione.
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pharmaceutical drugs, are highlighted. We discuss areas in
which future research will be needed to ascertain the degree to
which obesogen exposure contributes to the obesity epidemic.

Pathways Susceptible to Obesogen Action

Obesogen action on metabolic sensors

Because obese individuals exhibit both increased adipocyte
number and volume, one obvious place that obesogens could act
is on metabolic sensors that control adipocyte function and
differentiation. A number of transcriptional regulators control
lipid flux, adipocyte differentiation, and proliferation. Nuclear
hormone receptors (NRs), particularly the peroxisome prolif-
erator-activated receptors (PPARa, -8, and -v) play key roles in
these processes. NRs serve as metabolic sensors for a variety of
lipophilic hormones, dietary fatty acids, and their metabo-
lites. Activation of the retinoic X receptor (RXR)-PPAR« het-
erodimer stimulates B-oxidation of fatty acids (4). In contrast,
activation of RXR-PPARYy favors the differentiation of preadi-
pocytes and adipocyte progenitors in adipose tissue and regu-
lates lipid biosynthesis and storage (5). Human allelic variants
of PPARy that reduce activity, such as Pro12Ala, are associated
with lower body mass and improved insulin sensitivity and se-
rum lipid profiles in diabetics (6). Alleles that increase activity,
such as Pro115Gln, are associated with obesity and insulin re-
sistance (7). Pharmaceutical modulators of PPARy activity sim-
ilarly shift the balance in adipogenic programs. Treatment with
PPAR'y antagonists, such as SR-202, GW9662, or JTP-426467,
prevents high-fat diet-induced weight gain in rodents (8-10).
PPAR<y agonists such as the antidiabetic thiazolidinediones
(TZDs), rosiglitazone and pioglitazone, are potent insulin sen-
sitizers used to improve glycemic control and serum triglycerides
(11). However, TZDs lead to peripheral edema and persistent
weight gain with prolonged use (12, 13). Therefore, TZDs can
be considered to be pharmaceutical obesogens, and it follows
that other PPARy activators could have similar effects.

Obesogenic effects mediated by sex
steroid dysregulation

In addition to nutrient-sensing NRs, such as PPARs, NRs for
sex steroid hormones also impact adipose tissue development.
The hormones help to integrate metabolic functions among ma-
jor organs that are essential for metabolically intensive activities
like reproduction. Knockouts (KOs) of sex steroid pathway
components, e.g. FSH receptor (FORKO), aromatase (ArKO),
estrogen receptor (ER) (¢ERKO), and androgen receptor (ARKO),
show that sex steroids are required to regulate adipocyte hyper-
trophy and hyperplasia. Sex steroids also influence the sex-spe-
cific remodeling of specific adipose depots (14-17). Together
with peptide hormones such as GH, sex steroids mobilize lipid
stores and help to counteract the actions of insulin and cortisol
that promote lipid accumulation in adults. In this way, they are
antiobesogenic. Antiandrogenic therapies for prostrate cancer
produce weight gain, whereas estrogenic hormone replacement
therapy protects against many age- and menopause-related
changes in adipose depot remodeling (18). Dietary soy phy-
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toestrogens, such as genistein and daidzein, modulate ER sig-
naling and reverse the truncal fat accumulation in postmeno-
pausal women and in ovarectiomized rodent models (19, 20).

In contrast to the antiobesogenic effects of estrogen treat-
ment in adults, fetal or neonatal estrogen exposure can lead to
obesity later in life. Mice derived from dams maintained on diets
with low phytoestrogen content during pregnancy and lactation
experienced elevated serum estradiol levels and fetal estrogeni-
zation syndrome. Despite a lower than normal birth weight,
both males and females developed obesity at puberty when
maintained on soy-free chow (21). Interestingly, another study
noted a gender-specific adipogenic effect in immature mice fed a
low (or within the normal nutritional range) genistein diet. Adi-
pogenic weight gain was only seen in male mice and this effect
reversed at the highest pharmacological dose (22). Furthermore,
neonatal exposure to the potent synthetic estrogen, diethylstil-
besterol (DES), initially led to depressed body weight that was
followed by long-term weight gain by adulthood in female mice
(23, 24). Male mice exposed to DES in the same way did not
become obese but rather showed a dose-dependent decrease in
overall body weight (25). These disparate results underscore the
important and potentially contrasting effects that the same
chemical may have, depending on gender. Thus, differences in
outcome elicited by treatment with various classes of ER ago-
nists probably reflects the ability of the compounds to activate
the ERs as well as their potential for targeting additional cellular
signaling pathways and organ target sites.

Obesogens and central integration of energy balance

Drugs and chemicals that target NRs with direct relevance to
adipocyte biology are obvious candidates for obesogen action.
Another class of targets would be components of the central
mechanisms that coordinate the whole-body response to daily
nutritional fluctuations. The hypothalamic-pituitary-adrenal
axis plays an important role in regulating appetite to prevent
hyperphagia and normalize energy homeostasis. Appetite and
satiety are regulated by a variety of monoaminoergic, peptider-
gic, and endocannabinoid signals that are generated in the di-
gestive tract, adipose tissue, and brain. Any of these signals
could be potential obesogen targets. Indeed, body weight dis-
ruption is observed in various neurological disorders (schizo-
phrenia, bipolar disorder, and depression), and as a result of
some pharmaceutical treatments (atypical antipsychotics, tricyclic
antidepressants, selective serotonin reuptake inhibitor antidepres-
sants) intended to treat them (26-28). For example, patients un-
dergoing olanzapine therapy experience a dose-dependent weight
gain of 5-10 kg/yr (27) compared with patients on therapy with
typical antipsychotic drugs (29, 30). This topic has been recently
reviewed elsewhere (2) and, for brevity, will not be considered
further here.

Obesogens and programming of metabolic setpoints
The activity of metabolic sensors, sex steroid regulation, or
the perception of hunger and satiety are all important potential
obesogen targets. Hyperphagia resulting from disruption of hy-
pothalamic appetite centers provides one plausible way to un-
balance the energy equation. Hypothalamic output plays an
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important role in implementing adaptive responses that es-
tablish metabolic setpoints and regulate overall metabolic
efficiency. Much of the control over these adaptive processes
resides in the hypothalamus-pituitary-thyroid axis that deter-
mines systemic thyroid hormone output. Thyroid hormone ex-
erts widespread effects on metabolism and sets the basal meta-
bolic rate. Local conversion of T, (which is inactive on the
thyroid hormone receptor) to the receptor agonist T; by type 2
deiodinase increases thyroid hormone receptor signaling in a tis-
sue-specific manner. Combined with sympathetic adrenergic activ-
ity, elevated thyroid hormone receptor signaling regulates expres-
sion of a number of respiratory components, including uncoupling
protein-1 in brown adipose tissue and muscle that reduces meta-
bolic efficiency and increases energy expenditure (31). An interest-
ing recent report links the ability of the PPARYy agonist rosiglita-
zone to 1) reduce sympathetic activity to brown adipose tissue and
white adipose tissue; 2) down-regulate hypothalamus-pituitary-
thyroid signaling by reducing expression of type 2 and type 1 deio-
dinases; and 3) decrease expression of the proenergy expenditure
peptides CRH and cocaine and amphetamine-regulated transcript
in the hypothalamus with positive energy balance (32). Depression
of circulating T, levels, localized decreases in peripheral T, synthe-
sis or reduced input from the sympathetic nervous system would be
expected to blunt adaptive responses and promote a propensity for
metabolic syndrome and obesity.

Regulation of glucocorticoid hormone levels is another crit-
ical component of the hypothalamic-pituitary-adrenal axis that
regulates metabolism in peripheral tissues (including fat) and
the stress responses. Glucocorticoids play an important role in
adipocyte differentiation, and altered glucocorticoid levels can
affect long-term metabolic programming and the response to
physiological challenges (33, 34). Increased glucocorticoid pro-
duction or inhibited local inactivation via modulation of 118-
hydroxysteroid dehydrogenase type 1 (reactivating) or type 2
(inactivating) enzymes will inappropriately activate the nuclear
glucocorticoid receptor, contributing to the development of
obesity (35). For example, transgenic overexpression of 118-
hydroxysteroid dehydrogenase (HSD)1 in adipose tissue in-
creases intracellular corticosterone levels, resulting in visceral
obesity, glucose intolerance, and insulin resistance. In contrast,
targeted overexpression of the inactivating enzyme, 118-HSD2,
protects against diet-induced obesity (36). A number of dietary
agents with the ability to elevate or depress glucocorticoid sig-
naling have now been described (37). Notably, the minor com-
ponent of licorice, glycyrrhetinic acid, or a synthetic derivative
carbenoxolone, inhibits 118-HSD2 activity, raising active glu-
cocorticoid levels (38). Prenatal exposure to carbenoxolone in
rats reduces birth weight, raises basal corticosterone, alters hy-
pothalamic expression of GR, and induces hyperglycemia (39,
40). Thus, environmental chemicals that can inhibit 118-HSD2
would be expected to have similar effects (41).

Endocrine Disrupters as Obesogens

The discussion above illustrates several examples of pharma-
ceutical obesogens that target a variety of cellular pathways to
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promote adipogenesis and obesity. In light of these observations, it
is reasonable to expect that dietary or environmental chemicals
that target the same pathways would produce comparable effects.
We will point out several classes of potential environmental endo-
crine-disrupting chemicals that also have the potential to act as
obesogens. Cellular targets are indicated where they are known.

Bisphenol A (BPA) and xenoestrogens

Several prominent xenoestrogenic pollutants exhibit obeso-
genic properties. BPA and nonylphenols are essentially ubiqui-
tous in human populations through their wide use in industrial
and consumer products (e.g. leachates from polycarbonate plas-
tics for BPA or alkylphenol polyethoxylate detergents as a
source of nonylphenol). BPA is routinely detected in human
serum within the range of 0.3-4.4 ng/ml (1.3-19 nm) (42, 43),
and a positive association has been made between human serum
BPA levels and obesity and polycystic ovary syndrome (44). Cell
culture studies in the murine 3T3-L1 model demonstrate that
such compounds can promote adipogenesis (45-48). Treatment
with BPA in the presence of insulin enhances the differentiation
of 3T3-L1 preadipocytes by up-regulating genes required for
adipocyte differentiation (46, 49). However, it is not clear
whether these effects are mediated exclusively by activation of
the nuclear ER or through some other mechanism, because dif-
ferent xenoestrogens have varying effects on adipocyte differen-
tiation (49). In addition to its ability to bind to ERs, BPA has
been shown to activate the membrane ER at low doses (50) via
the insulin-dependent phosphatidylinositol 3-kinase/Akt ki-
nase pathway, enhancing glucose uptake (45, 48). Therefore, it
is possible that BPA acts in a nongenomic manner to stimulate
adipocyte differentiation, and future studies will be required to
sort out the mechanism of action. Consistent with the DES re-
sults noted above, prenatal and neonatal exposure of rodents to
levels of BPA (equivalent to serum concentrations observed in
humans) resulted in increased body weight and hyperlipidemia
(51, 52). Trends toward increased food intake and decreased
activity levels were also noted in these experiments, although the
results did not reach statistical significance. It will be important
to determine the relative contributions of altered developmental
metabolic programming, effects on physical activity, and excess
caloric intake on obesity in this model. Taken together, these
data suggest that xenoestrogens can exert proadipogenic effects
through a number of plausible mechanisms and that more de-
tailed analysis of how xenoestrogens affect weight is warranted.

Organotins

Organotins are a class of persistent organic pollutants that
are widely used in polyvinylchloride plastics, as fungicides and
pesticides on crops, as slimicides in industrial water systems, as
wood preservatives, and as marine antifouling agents. We and
others showed that tributyltin (TBT) and triphenyltin (TPT) are
highly selective and potent activators of two different types of
NRs: the RXRs (RXRa, -B, and -y) and PPARy (53, 54). PPARy
and RXRs function as obligate heterodimers and, as noted
above, act as metabolic sensors that regulate adipocyte number,
size, and function. The ability to target both halves of the RXR-
PPARYy heterodimer, or of RXR homodimers simultaneously
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would be predicted to be particularly effective in eliciting obe-
sogenic effects because adipogenic signaling can be mediated by
ligand activation of either type of dimer.

TBT can drive the differentiation of murine 3T3-L1 adipo-
cytes in vitro and activates RXR-PPARy-dependent proadipo-
genic gene networks in liver, adipose tissue, and bone marrow
(53-56). Prenatal exposure to TBT results in precocious lipid
accumulation in adipose tissues and hepatic steatosis of new-
born mice (53). Long-term effects of prenatal exposure include
an increase in epididymal fat mass and a trend toward body
weight gain with age (Ref. 53 and our unpublished data). De-
velopmental exposure to TBT leads to ectopic adipocyte forma-
tion in the frog Xenopus laevis (53), revealing a conservation of
mechanism in vertebrates. Intriguingly, TBT perturbs fatty acid
homeostasis and enhances lipid accumulation in ramshorn
snails, which implicates RXR as a key player in this process,
because snails lack a PPARYy ortholog (57). Taken together,
these studies reveal both acute and long-term adipogenic effects
of organotin exposure, particularly if such exposure occurs
within sensitive developmental windows.

In addition to their ability to activate RXR and PPARvY,
organotins such as TBT and dibutyltin inhibit 118-HSD2 activ-
ity by targeting cysteine residues necessary for enzymatic activ-
ity (58). Maternal dosing of TBT leads to significant transfer and
accumulation of organotins in the fetal placenta, liver, and brain
(59). This suggests another mechanism through which organotins
can affect obesity, i.e. by causing hypercortisolism as a result of
inhibiting the protective actions of 118-HSD?2 in fetal tissues.

It is reasonable to question the doses at which these effects
occur and to compare them with actual or inferred human ex-
posure. Both the receptor binding affinity (K,) and potency
(ECso) values for TBT and TPT are in the range of 5-20 nMm for
both RXRs and PPARYy (53). Organotin levels in marine mam-
mals that bioaccumulate persistent organic pollutants routinely
reach levels of several micrograms/g wt (~7 wm) (60). There are
relatively few data from human tissues and blood currently
available. Documented organotin levels in Europe and Asia are
in the range of 2 ng/g wet weight (~7 nM) (61); although a more
recent study of Finnish fishermen shows TPT as the major or-
ganotin in the range of 0.09 and 0.67 ng/ml (~ 0.5-2 nMm) (62).
There is only a single study documenting total organotins in
human blood from the United States; this study showed average
TBT levels of approximately 8 ng/ml (~27 nMm) (63). These
geographical and historical variations likely reflect the sparse
nature of the data available, but they also illustrate the general
principle that human exposure to obesogenic organotins is in
the range required to activate RXR-PPARY.

Perfluorooctanoic acid (PFOA) and phthalates

Other classes of commonly encountered chemicals can neg-
atively impact lipid and adipose homeostasis. These include
phthalate plasticizers (some of which are also xenoestrogens)
used to soften PVC plastics and various perfluoro alkyl com-
pounds (PFCs) that are widely used surfactants and surface re-
pellents in consumer products. Work in several laboratories has
established that phthalates and PFCs are agonists for one or
more of the PPARs (with many exhibiting a preference for
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PPARa activation). This activation provides a mechanistic basis
for disturbed lipid and steroid metabolism (64-69). For ex-
ample, exposure to (2-ethylhexyl) phthalate (DEHP) or
PFOA increases PPARa-dependent lipid mobilization and
fatty acid oxidation and leads to adipose tissue atrophy (70, 71).
Consequently, exposure to DEHP or PFCs might be expected to
result in reduced body weight and decreased adipose mass. As
expected, prenatal exposure to low to moderate levels (>5
mg/kg body weight) of PFOA in rodents led to decreased adi-
pose mass and body weight (72). Paradoxically, chronic low-
level exposure to PFOA (>5 mg/kg body weight) depressed
birth weight, as previously reported, but increased adipose tis-
sue mass and body weight gain after puberty (73). This suggests
that PFOA is acting through a non-PPARa-mediated pathway
to induce obesity. One candidate is PPARy, but this is somewhat
controversial because PFOA has been reported to activate
PPARYy by some investigators (69, 74) but not others (75).

Human exposure to phthalates and PFCs is primarily the
result of these chemicals leaching from plastics containing non-
bonded phthalates and PFCs from treated surfaces. Transfer of
primary phthalates, such as DEHP, to food during processing
results in an estimated average daily intake of about 160 ug/d
(76). Urinary phthalate metabolites and serum levels of major
PFC species are in excess of several micrograms/liter in more than
75% of the US population (77), well within the range of concern
for endocrine disruption. A recent epidemiological study revealed a
positive association between the presence of urinary DEHP metab-
olites and increased waist circumference and insulin resistance in
men (78). Among the metabolites noted, mono[2-ethyl-hexyl]
phthalate (MEHP) is a known potent and selective activator of
PPARY (66) that promotes differentiation of 3T3-L1 cells into adi-
pocytes (79). This suggests that, although many phthalates are
more active on PPAR« than they are on PPAR 'y, phthalate metab-
olites may be more selective for PPAR7y. Moreover, if the parent
phthalates exert their effects on PPAR« in the liver whereas their
metabolites act on PPARY in fat, this could also explain the net
weight gain observed in exposed individuals.

Obesogens and Animal Models

There is growing interest in the effects of chemicals on obe-
sity. Considering the potential complexity of obesogen action, it
is worthwhile considering what types of experiments in animal
models could be most useful. We need to know whether obeso-
gens are truly causative and to establish the range of possible
effects to discriminate among possible physiological mecha-
nisms and understand the relative contribution of obesogens to
the obesity epidemic. An important experimental parameter is
to define appropriate regimens for dosing and timing of expo-
sures. It is well established that effects of exposure to endocrine-
disrupting chemicals may not always reflect expected mono-
tonic dose-response relationships. Many, if not most, of the
known and suspected obesogens have multiple modes of action
or may elicit compensatory mechanisms. Obesogens affecting
adipogenesis, per se (i.e. recruitment, differentiation, and hyper-
plasia) likely exert their maximal effects when adipose tissues
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differentiate during discrete windows of sensitivity (e.g. fetal
development, perinatal nursing, or adolescence). Those that
promote hypertrophy, via misregulation of metabolic fluxes,
may be active throughout life if exposures are chronic.

It is becoming increasingly apparent that the relative distri-
bution of fat mass among the various adipose depots has dis-
proportionate consequences for metabolic physiology. For ex-
ample, abdominal adiposity is highly correlated with metabolic
syndrome disorders whereas sc fat in other areas is not (80).
Thus, reliance on weight gain, by itself, may not adequately
reflect the effects of obesogen exposure. High-resolution live
imaging technologies for fat-water analysis, e.g. dual energy
x-ray absorptiometry (DXA) or improved Dixon MRI protocols
(81), should allow a more comprehensive evaluation of changes
in adipose depots and any potential association with disease risk
factors. It would also be valuable to complement such data with
information on dynamic responses at the tissue level, such as
changes in adipose tissue cellularity, adipocyte size distribution,
and altered adipokine profiles.

Another important area where information is lacking con-
cerns whether and how obesogen exposure alters energy intake
and expenditure. Effects of exposure on appetite, physical ac-
tivity, resting metabolic rate, adaptive thermogenesis, and
growth rates should all be quantified to identify any alterations
in the balance among these physiological pathways. Sensitive
infrared thermographic techniques can now be applied to adi-
pocyte cell cultures and to whole adipose depots, in live animal
studies to measure changes in thermogenesis. Such data would
be particularly valuable for extrapolating cellular outcomes of
obesogen exposure to site-specific effects on metabolic effi-
ciency in vivo (82—84).

Lastly, obesogen-induced increases in adipose mass should
be placed in context relative to indices of metabolic syndrome.
The physiological process of diverting excess calories toward
lipid storage may be benign or pathological depending on the
mechanism and site. For instance, the thiazolidinediones pro-
mote adipose weight gain, but help normalize deleterious blood
glucose levels in diabetics. Alternatively, if adipose hypertrophy
or hyperplasia is driven by chronic dysfunction (e.g. through
inflammatory dysregulation of adipokine secretion or sensitiv-
ity) the obesity itself may actively advance associated disease
states. Therefore, understanding how an obesogen challenge
tilts the balance from benign to pathological patterns of weight
gain will be an area of great interest, particularly in relation to
early prognostic indicators of obesity-related disorders, such as
insulin resistance and inflammatory cytokine and adipokine
production.

Future Directions

It is perhaps paradoxical in the current economic climate that
obesity is one of the greatest threats to worldwide public health.
It is likely that the progressive increase in worldwide obesity
rates across demographically diverse economies reflects a shift
in how our bodies respond to dietary and environmental varia-
tions. Conventional medical wisdom holds that obesity can be
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prevented or treated by simply reducing caloric input and in-
creasing physical activity. However, it is also quite clear that,
despite unprecedented public awareness of the obesity epidemic,
relatively little progress has been made in combating obesity in
the Western world. The modern Western lifestyle with an abun-
dance of energy-rich foods and decreased physical activity may
be exposing underlying genetic and environmental factors that
alter our ability to correctly regulate weight. The environmental
obesogen hypothesis proposes that perturbations in metabolic
signaling, resulting from exposure to dietary and environmental
chemicals, may further exacerbate the effects of imbalances in
diet and exercise, resulting in an increased susceptibility to obe-
sity and obesity-related disorders.

The obesogens, for which the best data exist, share some com-
mon features. Many are mimics of NR ligands (TBT, MEHP, BPA,
and PFOA) that can directly regulate genetic networks relevant to
adipogenesis and obesity. Further complicating the picture, some
of the compounds can have multiple modes of action (e.g.
TBT regulation of RXR-PPARy activity, expression of aromatase
mRNA, aromatase enzymatic activity and glucocorticoid ho-
meostasis; activation of PPARa by phthalates but the activation of
PPARY by phthalate metabolites). Prenatal and early postnatal
exposures have been shown to result in lasting changes, suggesting
additional epigenetic mechanisms of action. Epigenetic changes
resulting from obesogenic exposures are currently poorly under-
stood. This area will be important for future research, insofar as
these changes may influence the stem cell compartment to modu-
late the size of the preadipocyte pool and/or the number of multi-
potent stem cells that enter the adipocyte lineage.

Whereas the action of obesogens in animal models is largely
well established, the connection to human epidemiology is less
s0, and many questions remain to be answered. We currently
know relatively little about overall burdens of the known (TBT,
MEHP, BPA) and suspected (PFOA) obesogens in the popula-
tion at large. We need to know when the exposures occur, com-
pared with the windows of sensitivity for obesogen effects. Very
little is known about the adult outcomes of prenatal, early post-
natal, or later exposures. Do the effects differ depending on
when the individuals are exposed, as is the case with estrogens?
Are the effects of obesogens limited to altering developmental
programming or are obesogens effective at increasing fat cell
size and number at any time in life? Clinical experience with
TZDs and atypical antipsychotics suggest that adult exposure is
also effective at inducing weight gain. What factors might modify
the effects of obesogen exposure? Are the effects of obesogen ex-
posure on metabolic programming permanent or can they be over-
come and, if so, how? Although exposure to obesogenic chemicals
is presumed to be widespread, there are obviously differences in
individual responses. Current studies such as the National Health
and Nutrition Examination Survey are limited to measuring obe-
sogens and their metabolites in blood and urine. Biomarkers of
prior exposure, particularly during sensitive developmental win-
dows, will be important to identify exposures that may have been
transient, yet might have caused enduring effects.

In conclusion, although there is abundant evidence that
diet and exercise are key factors in the obesity epidemic, it is
equally clear that a variety of environmental factors play an
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important role in this process. These include such factors as
composition of the diet, gut flora, insufficient sleep, stress,
social environment, the built environment, maternal influ-
ences, viruses, and polymorphisms in key genes. Environmen-
tal obesogens that target key hormonal signaling pathways
involved in adipogenesis, fat cell function, metabolic set-
points, energy balance, and the regulation of appetite and
satiety are also likely to play important roles in obesity and
are therefore worthy of further study.
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